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The relaxation of straight contact lines is considered in the context of the Wilhelmy-plate experiment: a
homogeneous solid plate is moving vertically at constant velocity in a tank of liquid in the partial wetting
regime. We apply the contact line dissipation approach to describe the quasistatic relaxation of the contact line
toward the stationary state �below the entrainment transition�. Asymptotic solutions are derived from the
differential equations describing the capillary rise height and the contact angle relaxation for small initial
deviations of the height from the final stationary value in the model considering the friction dissipation at the
moving contact line, in the model considering the viscous flow dissipation in the wedge, and in the combined
model taking into account both channels of dissipation. We find that for all models the time relaxation of the
height and the cosine of the contact angle are given by sums of exponential functions up to a second order in
the expansion of the small parameter. We analyze the implications which follow when only one dissipation
channel is taken into account and compare them to the case when both dissipation channels are included. The
asymptotic solutions are compared with experimental results and with numerically obtained solutions which
are based on hydrodynamic approach in lubrication approximation with and without a correction factor for
finite contact angles. The best description of the experimental data, based on multicriteria testing, is obtained
with the combined contact line dissipation model which takes into account both channels of dissipation.
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I. INTRODUCTION

The spreading of liquid on solid surface has numerous
applications and that has provoked various studies employ-
ing different experimental and theoretical approaches. An
important theoretical problem is the description of the dy-
namics of the three-phase contact line and its relation to the
dynamics of the so-called inner part of the system in close
vicinity of the contact line. A number of different approaches
and models were suggested in the literature �1–19�. A com-
parison of the predictions made within the different ap-
proaches for the different geometries �drops, capillaries,
Wilhelmy-plate geometry, fibers, etc.� with the available ex-
perimental data, as well as a justification of the approxima-
tions made, is among the important problems standing in
front of the scientists working in this field.

For small capillary and Reynolds numbers the basic mod-
els suggested lead to a relationship between the dynamic
contact angle and velocity of the contact line �19�. The stud-
ies show that it is very difficult from a comparison with the
experimental results to give a preference to a specific model
based on the above relation only. Taking into account this
Brochard-Wyart and de Gennes �20� suggested that one
should use additional criteria when comparing different mod-
els. For such additional criteria one can use, e.g., the type
and the parameters of the function, describing the relaxation

of the contact angle, the critical velocity at which the relax-
ation toward stationary state is no longer possible, etc.

There are several important questions concerning the re-
laxation process which need to be answered and the answers
to be compared with the experiment for the different models
suggested in the literature. It is important to know what kind
of function describes best the relaxation process for finite
values of the equilibrium contact angle for all stages of the
relaxation �initial, intermediate, and final—see, e.g., �21��,
what is the relaxation time, how it depends on the velocity of
the plate, and what are the predictions of the linear analysis
of the stability of the solutions.

In the approximation of small contact angles the
asymptotic solutions in the different models and geometries
lead to different power law dependencies of the dynamic
contact angle on time �e.g., for a plate and fiber withdrawing
from a tank of liquid in the hydrodynamic model �HDM�,
which focuses on the viscous flow dissipation in the wedge,
it was obtained �� t−1/2 �22,23�, and in the molecular-kinetic
model �MKM�, which focuses on the dissipation due to the
moving contact line, for a fiber it was found �� t−1 �23��.
They lead also to different critical contact angles below the
entrainment transition in the case of dewetting. It is interest-
ing to see what happens in the case of finite values of the
contact angle. Thus it is important to obtain asymptotic so-
lutions for the relaxation of the contact line beyond the as-
sumption of small contact angles.

Here we will try to answer some of the questions raised
above for one of the basic geometries studied that of a solid
plate moving vertically at constant speed in a tank of liquid
in the partial wetting regime by deriving and analyzing the
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asymptotic solutions valid for arbitrary values of the contact
angle. Following the work of Decker and Garoff �24� we use
the term Wilhelmy-plate geometry to refer shortly to this
system. Comparison between experimental data and the re-
lations between the dynamic contact angle and the velocity
for this geometry �using plate or fiber� in the different mod-
els are performed in �23,25–31�. In �31� a complex analysis
and comparison are made of the predictions of a hydrody-
namic approach �HA� in lubrication approximation with the
experimental results for a specific system—a polydimethyl-
siloxane �PDMS� liquid sliding down on a fluorinated silicon
surface. Recently in �32� numerical results were obtained in
the framework of the contact line dissipation approach
�CLDA� �12,19,33� considering only the dissipation due to
the moving contact line �MKM� �2,34�. These results were
compared with the experimental results in �31�. In the cur-
rent work we continue our studies in the framework of the
CLDA in the more general case where we take into account
also the viscous flow dissipation in the wedge �HDM�
�12,13,20,35�.

We obtain here the asymptotic solutions for the relaxation
of the contact line in the framework of the general CLDA for
the Wilhelmy-plate geometry for arbitrary values of the con-
tact angle for velocities below the entrainment transition. We
consider velocities which are sufficiently small so that the
motion of the meniscus can be considered quasistatic. This
allows one to use the simple analytic relation which exists in
equilibrium between the height of the contact line and the
contact angle �36�. Complex analysis is made of the CLDA
on the basis of the obtained asymptotic solutions and com-
parison of the predictions with the results of the HA in lu-
brication approximation and the complex experimental re-
sults in �31,37� is performed. We study the implications
which follow when only one dissipation channel is taken into
account and compare them to the case when both dissipation
channels are included.

II. PROBLEM FORMULATION

We consider a partially immersed homogeneous solid
plate moving vertically with constant speed U in a bath of
liquid as shown in Fig. 1. The considered speeds of the plate
are sufficiently small so that the motion of the meniscus can

be considered quasistatic. One of the plate faces �we do not
consider the other� is described with a Cartesian coordinates
�Y ,Z� where the Y axis is horizontal and the Z axis is di-
rected upward as shown in Fig. 1. The liquid of density �
forms with the air free surface S. Since the solid plate is
homogenous the problem reduces to the study of the two-
dimensional projection �S= �X ,Z�X�� of the meniscus in the
�X ,Z� plane. The liquid meniscus forms with the solid plate
an apparent contact line L and an apparent dynamic contact
angle �. Following Voinov �3�, by apparent dynamic contact
angle we refer to the angle of the slope of the meniscus
profile �S at a distance d from the vertical plate if this angle
changes weakly with the contact line height relative to the
liquid surface sufficiently away from the moving plate �see
�19��. In quasistatic regime the same distance d can be used
for which the Young equation holds for the equilibrium con-
tact angle. The apparent contact line is defined by its rise
height H=Z�0� �as shown in Fig. 1�. The considered veloci-
ties of the plate are suitably small so that the energy dissipa-
tion which occurs is basically in the vicinity of the contact
line in the region below the scale of observation d.

In the CLDA �12� one can obtain an equation for the
velocity V of the contact line relating the force responsible
for the motion of the contact line and the dissipation of en-

ergy �̊ occurring when the contact line is moving. The mo-
tion of the contact line is due to the out-of-balance surface
tension force, Fw=��cos �eq−cos ��, where � is the liquid/
vapor surface tension and �eq is the apparent equilibrium
contact angle. Thus using the standard mechanical descrip-
tion of dissipative system dynamics �21,23,38� one has

Fw = ��̊/�V . �1�

When the existence of hysteresis is not taken into account �eq
is given by the Young equation and whenever there is a hys-
teresis of the equilibrium contact angle in the interval
��eq

r ,�eq
a �, then for �eq in Eq. �1� one should take �eq

r or �eq
a

depending on the direction of the contact line motion.
In the CLDA there are two basic approaches or models

�19,21�, each focusing on different channel of dissipation of
energy when the contact line is moving. In the MKM the

focus is on the dissipation �̊l which is due to the attachment
and detachment of liquid molecules to the solid surface. At
low velocities V of the contact line relaxation the expression
for the dissipation function per unit length of the contact line
can be written as �2,21�

�̊l = �V2/2, �2�

where � is a friction dissipation coefficient, which has the
same dimensionality as the liquid viscosity �. An expression
for � was derived in the molecular-kinetic theory of Blake
and Heynes �2�. In the HDM the emphasis is on the viscous

flow dissipation �̊w which occurs basically in the vicinity of
the contact line in a mesoscopic region below the scale of
observation. Using Moffatt’s solution �39� for the flow of a

viscous fluid inside a corner, one has for �̊w per unit length
of the contact line �see also Eq. 3.2 in �3��

FIG. 1. �Color online� Schematic drawing of the system.
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�̊w = 2�lV2 sin2 � /�� − sin � cos �� , �3�

where

l = ln�d/dmin� . �4�

� is the liquid viscosity and dmin is the limiting small scale
down to which it is possible to approximately use the hydro-
dynamic description of the fluid �3�. For small contact angles
�2�lV2 sin2 � / ��−sin � cos ��→3�lV2 / tan �� instead of Eq.

�3� one can use the lubrication approximation �40,41� for �̊w,

�̊w = 3�lV2/tan � , �5�

or even the simpler form, �̊w=3�lV2 /� �12�. We denote this
variant of the HDM by HDM-L �where L stands for lubrica-
tion approximation�.

Taking into account Eq. �2� or �3� in Eq. �1� one has the
following equations:

�V = ��cos �eq − cos �� , �6�

	1 sin2 � /�� − sin � cos ��V = ��cos �eq − cos �� , �7�

respectively, where we have set 	1=4�l. In the lubrication
approximation one has instead

	2V cot � = ��cos �eq − cos �� , �8�

where 	2=6�l.
In addition to the MKM and the HDM it is of interest to

consider a model which takes into account both channels of
dissipation. This is in accordance with de Gennes approach
in his analysis of the dissipation in the precursor film. de

Gennes suggested �12� that in the dissipation energy �̊ one
should include all possible channels of dissipation occurring
when the contact line is moving: the viscous flow dissipation

�̊w, the dissipation at the advancing contact line �̊l, and the

dissipation in the precursor film �̊ f. Here we do not consider

the dissipation in the precursor film �̊ f since it is not a ge-
neric feature in the partial wetting regime. Thus in the partial
wetting regime taking into account both channels of dissipa-
tion �a combined contact line dissipation model �CLDM��
one has

�� + 	
����V = ��cos �eq − cos �� , �9�

where


��� = sin2 �/�� − sin � cos ��, 	 = 	1, �10�

or


��� = 1/cot �, 	 = 	2, �11�

in a lubrication approximation �a combined CLDM-L�. Note
that the parameters � and 	 have the same dimensionality. In
the case of a plate moving with velocity U one has for the
velocity V of the contact line relative to the plate,

V = dH/dT − U , �12�

where T is the time. By setting 	=0 or �=0 in Eq. �9� one
obtains the MKM and the HDM, respectively. Equation �9�

can be made dimensionless by expressing the height in terms
of the capillary length lc, lc=�� /�g �g is the gravity accel-
eration�, and the time in terms of the characteristic time,

�0 = lc�a� + b	�/�, where a 	 const, b 	 const.

�13�

In what follows �unless specifically stated otherwise� we
will work in dimensionless variables and for simplicity we
will use the same symbols, but using the lower case letters,
as for the dimensional variables, i.e., h=H / lc, t=T /�0, and
the dimensionless plate velocity is

u = �a� + b	�U/� . �14�

We suppose that initially the liquid meniscus is not in a
stationary state. Under the action of the surface tension and
the gravity the incompressible liquid relaxes toward the sta-
tionary state dissipating energy. In the quasistationary regime
the liquid meniscus S	�x ,y ,z�x�� is a Laplacian surface at
any instant of time t. The linear sizes of the container are
considered sufficiently big as compared to the capillary
length lc so that the following conditions hold for the menis-
cus at infinity: z���=0, dz /dx 
�=0 �the container wall, op-
posite to the moving plate, can be considered as placed at
infinity�. Based on the quasistationarity assumption one can
utilize the expression known from equilibrium �36� relating
the instantaneous height and the dynamic contact angle of
the meniscus at the moving plate

h = �2�1 − sin �� , �15�

from which we follow the expressions

cos � = h�4 − h2/2, sin � = 1 − h2/2, � = arcsin�1 − h2/2� .

�16�

Without a loss of generality one can study the case

0 
 h � �2, �17�

which corresponds to contact angles 0��
90° �since the
following symmetry holds h ,�⇔−h ,180°−��.

Taking into account the relations �Eq. �16�� expressions
�10� and �11� for the function 
��� can be expressed as func-
tions of the height h: 
���	
���h��. Then from Eq. �9� the
following differential equation for the height h of the contact
line follows:

dh

dt
= u +

�

� + 	
�h��cos �eq −
h

2
�4 − h2� . �18�

Our goal is to find asymptotic solution h�t� of Eq. �18� for
small initial deviations of the capillary rise height from the
final stationary height hst �or the equilibrium height heq in the
case of a spontaneous relaxation u=0�. After a solution is
found for the contact line height h�t�, one can obtain the time
evolution of the cosine of the contact angle using Eq. �16�.

III. ASYMPTOTIC SOLUTION

A. MKM

Equation �18� takes its simplest form when 	=0, ��0.
In this case a=1, b=0 are set and one has

ASYMPTOTIC SOLUTIONS FOR THE RELAXATION OF… PHYSICAL REVIEW E 81, 011607 �2010�

011607-3



dh

dt
= u + �cos �eq − h�4 − h2/2� . �19�

We first study this simpler case. From Eq. �19�, taking into
account condition �17� one gets the following expression for
the stationary height hst:

hst = �2�1 − �1 − �cos �eq + u�2� . �20�

When dh /dt�0 we look for the asymptotic solution h�t� of
Eq. �19� in the case of small deviations ��t� from the final
value hst �Eq. �20�� in the following form:

h�t� = hst + ��t�, where 
��t�
 � 1. �21�

From Eq. �19� an ordinary differential equation follows for
��t�,

d��t�/dt = cos �eq + u − �� + hst��1 − �� + hst�2/4. �22�

Presenting the right-hand side of Eq. �22� as a Taylor series
one has

d��t�/dt = − A� + B�2 + O��3� , �23�

where the constants A and B are given by

A = �2 − hst
2 �/�4 − hst

2 , �24�

B = hst�6 − hst
2 �/�2�4 − hst

2 �4 − hst
2 �� . �25�

Equations �24� and �25� can be expressed in the following
alternative form using Eq. �16�:

A = hst tan �st, B = hst
2 �2 − sin �st�/�cos �st�1 − sin �st�� .

�26�

We will find a solution of Eq. �23� by the perturbation tech-
nique. Considering the initial deviation �=��0� to be a small
parameter, we now seek a solution of Eq. �23� in the follow-
ing form:

��t� = �1�t�� + �2�t��2 + ¯ . �27�

In this work we will obtain only the first two terms
�1�t� , �2�t� in this expansion. It is clear that in the same way
one can proceed to obtain the higher order corrections. In-
serting the expansion �Eq. �27�� for ��t� into Eq. �23�, we
obtain to a first order in � the equation for �1�t�,

d�1�t�/dt = − A�1�t� , �28�

and to a second order the equation for �1�t� and �2�t�,

d�2�t�/dt = − A�2�t� + B�1
2�t� . �29�

The appropriate boundary conditions are

�1�0� = 1, �2�0� = 0. �30�

The integration of Eqs. �28�–�30� gives

�1�t� = exp�− At� , �31�

�2�t� = − exp�− At��exp�− At� − 1�B/A . �32�

By substituting back in Eq. �27� �1�t� and �2�t� we obtain for
h�t� �up to a second order of the small parameter �� the final
expression,

h�t� = hst + exp�− At�� − exp�− At��exp�− At� − 1�B/A�2

+ O��3� . �33�

After inserting h�t� in Eq. �16� an exponential time depen-
dence follows also for the cosine of the contact angle, cos �,
with the same relaxation times

cos � = cos �eq + u + A exp�− At��

+ B exp�− At��2 exp�− At� − 1��2 + O��3� . �34�

B. General case

It appears that in the general case of a combined CLDM
starting from Eq. �18�, one can proceed in exactly the same
way as in the case ��0, 	=0 to obtain the stationary solu-
tion hst and the asymptotic solution h�t� in the neighborhood
of hst, respectively. The expression of the stationary height
hst in terms of the parameters �U ,�eq ,� ,	� is very long and
cumbersome and is difficult to analyze. �For example in the
combined CLDM-L hst is a solution of an algebraic equation
of fourth order in hst

2 , depending on the parameters
�U ,�eq ,� ,	2�.� That is why we use here another approach for
practical applications �see Sec. IV� which allows a compact
expression of the asymptotic solution. We achieve this by
changing the order �U ,�eq ,� ,	�⇒hst⇒��t� used in the case
	=0 in which hst and ��t� are calculated consecutively for
given values of the parameters �U ,�eq ,� ,	�. Instead of this,
for given values of the parameters ��eq ,� ,	� and for every
value of hst in the interval 0�hst��2 one gets the dimen-
sionless velocity u and then finds the dimensional velocity U,
i.e., one has hst⇒u⇒U; then one obtains the asymptotic
solution ��t�: hst⇒��t�, i.e., hst⇒u�hst�⇒��t ,hst�. That is
instead of the explicit dependence h�t ,U� of the asymptotic
solution on U, here we obtain an implicit relation between
the asymptotic solution and the dimensional velocity of the
plate h�t ,hst�, U=U�hst�. In this case for expressing the vari-
ables and Eq. �18� in dimensionless form we use the follow-
ing settings in Eq. �13�:

a = 1, b = 
��st� = 
�hst� .

The dimensionless equation �Eq. �18�� is then written as

dh

dt
= u + � �

	
+ 
�hst���cos �eq −

h

2
�4 − h2�/� �

	
+ 
�h��

�35�

and its stationary solution hst can again formally be given by
expression �20�. Note that the parameter � /	 is a dimension-
less quantity. From here for the dimensionless velocity in the
stationary state one has
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u = 1
2hst

�4 − hst
2 − cos �eq. �36�

The dimensional velocity U �hst⇒u⇒U� is obtained using
Eq. �14� which now takes the following form:

U = � 1
2hst

�4 − hst
2 − cos �eq��/�� + 	
�hst�� . �37�

The asymptotic solution h�t� of Eq. �33� is also presented
by Eqs. �21� and �22� and the final solution is given by Eq.

�33�, where the coefficients A and B are now different and
given by the following expressions �using Eq. �16��:

A = hst
tan �st + 2�cos �eq

− cos �st�

��st�sin �st�tan �st
��st� − 1�

�/	1 + 
��st�
� , �38�

B =
4�1 − sin �st�
��st��tan �st
��st� − 1�

cos �st��/	1 + 
��st��
+

�1 − sin �st�2�2 + sin �st�
2 cos3 �st

+
�cos �eq − cos �st�
��st�

�/	1 + 
��st�

�
8�1 − sin �st�
��st�
sin2 �st

� �tan �st
��st� − 1�2

�/	1 + 
��st�
+ tan �st� −

�2 − 3 sin �st�
sin2 �st

−
8
2��st�

�1 + sin �st�
+

�4 − sin �st − 3 sin2 �st�
��st�
�1 + sin �st�cos �st sin �st

� .

�39�

In the lubrication approximation one has

A = hst�tan �st − �cos �eq − cos �st�/���/	2

+ cot�st�sin2 �st cos �st�� , �40�

B =
hst

4 �6 − hst
2 �

16 cos3 �st
+

hst�cos �eq − cos �st��5hst
2 − 18�

2��/	2 + cot�st��4 − hst
2 �3/2 sin3 �st

+
4 sin �st

3 − hst
2 �4 − hst

2 �cos �st + 4 cos �eq

��/	2 + cot �st�2 sin4 �st�4 − hst
2 �

, �41�

respectively. Equations �33� and �34� will then represent the
asymptotic solutions for the relaxation of the height and the
cosine of the contact angle in this case.

If now in Eqs. �38� and �39� one simply sets �=0 the
corresponding expressions for the coefficients A and B will
be obtained for the HDM. From Eqs. �40� and �41� by setting
�=0 one gets the coefficients A and B for the HDM-L, re-
spectively.

IV. ANALYSIS AND DISCUSSION

A. Limits of applicability of the solutions

The asymptotic solutions found for the height relaxation
of the contact line �Eq. �33�� and the cosine of the contact
angle �Eq. �34�� are sums of exponential functions. For initial
perturbations of the order of �10–20 % from the stationary
height hst the first two terms in the expansion of the
asymptotic solution give very good approximation of the so-
lution of the differential equations describing the relaxation
of the height and the contact angle for all models considered
�the MKM, the HDM, and the combined CLDM�. This
shows that the range of applicability of the asymptotic solu-
tions is sufficiently big so that a comparison with the experi-
mental data is possible as for the final stages of the relaxation
as well as for the intermediate times for which linear, power,

and single exponent functions have been suggested �for de-
tails see �21��.

In the case of a spontaneous relaxation �u=0�, for small
dynamic contact angles and zero equilibrium contact angle,
using the approximate expressions,

�h/�� � − 1/2, cos � � 1 − �2/2, tan � � � , �42�

from Eq. �18� one gets

d�

dt
� − 1

4��2/�� + 	/�� . �43�

From here one approximately also obtains power depen-
dencies of the dynamic contact angle on time �� t−1 and
�� t−1/2 for the MKM and for the HDM, respectively
�22,23�. As one can see the approximations �Eq. �42�� are no
good at finite contact angles therefore for finite contact
angles the power dependence on time is not a good approxi-
mation of the solution of Eq. �18�. The difference in the
powers of the power dependencies in time in approximation
of small contact angles of the solution of Eq. �18� for the
MKM and the HDM is used for experimental identification
of the dominant dissipation channel influencing the dynamics
of the contact angle. A difference between the MKM and the
HDM is also observed in the obtained asymptotic solutions.
Going back to dimensional quantities one gets that the relax-
ation rates �the inverse of the relaxation time �=1 /�� for the
MKM and for the HDM are proportional to � and �2, respec-
tively. �Note that the coefficient A �Eq. �23�� is actually the
dimensionless relaxation rate �=A.� In the obtained
asymptotic solution the relaxation rates for the MKM and the
HDM differ also for finite contact angles. This difference
manifests itself very clearly in the analysis of the variation of
the relaxation rate � with the velocity of the plate. We will
return to this problem also in Sec. IV C where we apply our
results to a specific experimental system �31�.
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B. Linear stability analysis

Linear stability analysis for the combined CLDM-L was
performed by Golestanian and Raphaël �42� for �eq�1.
Here, we perform linear stability analysis for finite equilib-
rium contact angles by the help of the obtained expressions
for A �or ��. The obtained expressions for the asymptotic
solutions for h�t� and cos ��t� describe a relaxation toward a
stable stationary state only for A�0. From here we can de-
termine the maximal value of the velocity u of the plate for
which a relaxation toward stationary state exists and from
which accordingly we can determine the maximal attainable
stationary height of the meniscus. In order to point out the
qualitative differences between the different models we con-
sider consecutively the MKM, the HDM, and the combined
CLDM.

1. MKM

In the case when 	=0 �the MKM�, as follows from Eq.
�26� the coefficient A can be written as

� 	 A =
hst

cot �st
. �44�

As one can see, A is always positive since 0
h��2
�Eq. �17�� and cot ��0 �Eq. �16��. A reaches zero at height
hst

� =�2 at zero stationary contact angle. Therefore as follows
from Eqs. �15� and �20�, the dimensionless critical velocity
u�, at which a relaxation toward a stationary state is no
longer possible when the plate is being withdrawn from the
tank of liquid, is

u� = 1 − cos �eq. �45�

These are the critical quantities for the MKM. The sta-
tionary states corresponding to contact line heights less than
�2 and nonzero stationary contact angles are stable with re-
spect to symmetrical perturbations of the contact line, i.e.,
perturbations for which the contact line remains parallel to
that of the stationary state �for the given velocity of the plate�
but its height is above or below the stationary height. In
contrast the experimental studies in �31,43� show that sta-
tionary solutions cease to exist before the contact angle
reaches zero value.

2. HDM

When 	�0, �=0 the coefficient A in the lubrication ap-
proximation �see Eq. �40�� can be written in the following
form:

A =
hst

sin �st cos2 �st
�cos �st sin2 �st − u� . �46�

The sign of A is determined by the sign of the term in the
braces,

A0 = cos �st sin2 �st − u . �47�

If u�0 the sign of A0 �Eq. �47�� is always negative for
�st=0° �see Eqs. �1� and �17��. Thus it follows that with
increasing the velocity of the plate u the solution looses sta-

bility before the stationary angle becomes 0° and before the
stationary height could reach the value �2, respectively. In
the approximation of small contact angles Eq. �47� is ap-
proximately written as

A0 � �st
2 −

�eq
2 − �st

2

2
. �48�

From there it follows that A0 and therefore A become zero
at critical stationary contact angle,

�st
� = �eq/�3. �49�

This is in agreement with the result of de Gennes �35� and
also with the result of Golestanian and Raphaël �42�.

Without the assumption of small contact angles from Eq.
�39� one can obtain a relation between �st

� and �eq in the
following form:

�eq = arccos„0.5/��1 − tan �st
� 
��st

� ��cos �st
� � + cos �st

�
… ,

�50�

and for HDM-L from Eq. �40� one has

�st
� = arccos �3 cos �eq. �51�

The value of the critical stationary velocity can be deter-
mined from Eq. �18� by setting the left-hand side to zero, i.e.,

0 = u� +
�

� + 	
��st
� �

�cos �eq − cos �st
� � .

By inserting cos �st
� from Eq. �50� or �51� in it then the

value of the critical velocity follows for the HDM and the
HDM-L, respectively, expressed in terms of the equilibrium
contact angle. In the same way one can proceed to find u� for
the combined CLDM from Eq. �53� and �54� �see below�.

The two dependencies �st
� ��eq�, given by Eqs. �50� and

�51�, are shown in Fig. 2 with short dot and solid lines,
respectively. The linear dependence �Eq. �49�� obtained by
de Gennes is shown with a dashed line. One can see that for
small contact angles all three lines are very close. For bigger
contact angles the HDM leads to dependence �st

� ��eq� very
close to the linear while in the lubrication approximation
there is a strong nonlinear increase �see Fig. 2�.

3. Combined CLDM

A relation between the critical stationary contact angle �st
�

and �eq for the combined model can be obtained as in the
previous case. For small contact angles result �Eq. �49��
holds true. In this case for A0 instead of Eq. �48� one has

A0 =
�

	2
�st

3 + �st
2 −

�eq
2 − �st

2

2
+ O��st

4 � . �52�

After elimination of the terms of third order one again ob-
tains the relation �Eq. �49�� for the critical stationary contact
angle.

Without the assumption of small contact angles from Eq.
�38� one obtains
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�eq = arccos„��/	1 + 
��st
� ��/�2
��st

� �

�cos �st
� �1 − tan �st

� 
��st
� ��� + cos �st

�
… , �53�

and for the combined CLDM-L from Eq. �40� one has

�eq = arccos�cos �st − �/	2 sin3 �st − cos �st sin2 �st� .

�54�

In the combined model the relation �st
� ��eq� depends on the

ratio � /	. For values of � /	�1 the dependencies are very
close to the dependencies in the HDM and HDM-L, respec-
tively. The dependencies which follow from Eqs. �53� and
�54� of �st

� on �eq are shown in Fig. 2 with dashed-dotted and
dotted lines, respectively, for � /	1 ;� /	2=1 ,3 ,10,100.
There are two special features in the behavior of �st

� ��eq�
which one can observe in Fig. 2. First, at fixed value of the
equilibrium contact angle �eq, the critical value �st

� decreases
with increasing the ratio � /	. The maximal value of �st

� in the
interval �0,90°� decreases with increasing the ratio � /	 and
at � /	=100 it is �12°, at � /	=10 000 it is �2.5°. For finite
values of the contact angle �eq in the combined CLDM
�without a complete domination of the one of the parameters
	 or �� one obtains a finite critical contact angle �st

� �0. The
asymptotic approach toward a zero critical contact angle
with increasing � /	 is quite slow. Second, the dependencies
�st

� ��eq� in the combined CLDM and in the combined
CLDM-L are very close to each other for a fixed value of the
parameter � /	. One can obtain the one dependence from the
other by simply changing slightly the value of � /	. For ex-
ample, the dependence �st

� ��eq� in the combined CLDM-L at
� /	2=10 coincides with the dependence �st

� ��eq� in the com-
bined CLDM at � /	1=13.5.

For a nonzero critical stationary contact angle the critical
stationary height is strictly less than �2 �see Eq. �16��. In
other words in the case when one considers the MKM one

obtains that the contact angle goes continuously to zero at
the maximal height �2 with increasing the plate velocity
�second-order phase transition as noted by Golestanian and
Raphaël �42��, while in the case when one considers the
HDM or HDM-L one gets that the contact angle changes
with a jump. We find here that the latter holds true also for
the combined CLDM.

C. Comparison with experimental data

The obtained asymptotic solutions for the relaxation of
the contact line �the height, the cosine of the contact angle,
and the relaxation rate as functions of the plate velocity� as
well as the obtained solutions for the critical plate velocities
allow one to perform a multicriteria testing of the different
models—the MKM, the HDM, and the combined CLDM.
For comparison with experimental data we use the data in
�31� where one can find information for all above mentioned
functions.

In Ref. �31� experimental results are presented for the
case when a solid plate is withdrawn with velocity U from a
bath of liquid. The plate is cut from a silicon wafer �siltronix�
covered with a thin layer of fluorinated material. The liquid
used in the experiment in Ref. �31� is PDMS with dynamic
viscosity �=4.95 Pa s, surface tension �=20.3 mN /m, and
density �=970 kg /m3. The capillary length of the PDMS is
lc=1.46 mm. The PDMS wets partially the fluorinated coat-
ing with a static receding angle �eq

r =51.5°. The dependence
of the dimensionless stationary height hst as a function of the
dimensionless velocity given by the capillary number
Ca=U� /� is shown in Fig. 2 in Ref. �31�. These results are
shown for the sake of convenience also here in Fig. 3 with
solid squares. The experimental studies show that the relax-
ation of the height of the contact line is well described by
exponential decay function for velocities below the critical.

FIG. 2. �Color online� Critical value of the stationary contact
angle �st

� as a function of the equilibrium contact angle �eq �both
given in degrees�. For the HDM the solid line; for the HDM-L short
dotted line. For the combined CLDM and the combined CLDM-L
the dashed-dotted and the dotted lines, respectively, for several val-
ues of the parameters � /	1 , � /	2. The de Gennes result �Eq. �49��
is shown with the dashed line.

FIG. 3. �Color online� Dimensionless height of the contact line
as a function of the plate velocity �expressed in terms of the dimen-
sionless capillary number Ca=u� /��: experimental results—solid
squares, squares with error bars; the MKM—solid line; the
HDM—dotted line; the HDM-L—dashed line; the combined
CLDM �� /	1=9.091� and the combined CLDM-L
�� /	2=6.66�—dashed-dotted lines; HA—short dotted line; and
HA-L—short dashed line.
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The experimentally obtained dependence in Ref. �31� of the
relaxation rate on the plate velocity below the entrainment
transition is reproduced here in Fig. 4 with solid squares with
error bars indicating the variation in the experimental results.
In this figure the dimensionless relaxation rate is
�=�lc / ���� and the dimensionless velocity is given by the
capillary number Ca. In �31� also the critical velocity is de-
termined Ca�=9.1�10−3, at critical height hst

� �1.1, and
nonzero critical contact angle �st

� �23°.
We will compare these data with the predictions of the

different models �the MKM, the HDM, and the combined
CLDM�. The use of the experimental value of �eq

r =51.5° in
the CLDA leads to that the results of all above models coin-
cide with the experimentally determined value of heq. In the
MKM and in the HDM one has one adjustable parameter: �
or 	, respectively; in the combined CLDM one has two ad-
justable parameters: � and 	 �there is no overdetermination
of the parameters �19��. We present here results for which we
have used the requirement that the solutions should have
relaxation rate at zero plate velocity ��0� within the experi-
mental error interval. This criterion determines uniquely
hst�Ca� and ��Ca� in the MKM and in the HDM. By extrapo-
lating the experimental results in �31� for ��Ca� to zero plate
velocity we require that ��0� lies in the interval
�0.029−0.0025,0.029+0.0025�. For the determination of the
additional parameter �in the combined CLDM� one should
use additional criterion, e.g., how close are the dependencies
hst�Ca�, ��Ca� to the experimentally determined, that
��Ca��=0, etc. Here we impose the requirement that
��Ca��=0 for the determination of the second parameter in
the CLDM. Of course, one can use different additional cri-
teria.

In Figs. 3 and 4 we show the obtained dependencies for
the stationary height of the contact line, hst�Ca�, and the re-
laxation rate, ��Ca�, respectively, as functions of the plate

velocity �given in terms of the dimensionless capillary num-
ber Ca� for the different models.

The best fit for the MKM leads to ��0�=0.029−0.0025
�the lower end of the interval�. As one can see from Figs. 3
and 4—solid lines, the MKM reproduces well the experi-
mental data on hst�Ca� and ��Ca� but leads to a value of the
critical velocity which is 40% higher than the experimentally
obtained value. In this model, as was shown in Sec. IV B 1,
the stationary state is stable for dimensionless height up to
�2 and zero contact angle which contradicts the experimental
results.

The HDM best fit gives ��0�=0.029+0.0025 �upper end
of the interval�. It does not reproduce well the experimental
results on hst�Ca� and ��Ca�. It leads to a value of the critical
speed which is two times smaller than the one found experi-
mentally. The HDM-L �shown with dashed line� leads to
even worse description of the experimental results than the
HDM �dotted line�. Even if one determines the adjustable
parameters of the HDM by fitting only the data on hst�Ca�
�without trying to get a good reproduction of the results on
��Ca� at the same time� one still gets a poorer description of
the hst�Ca� dependence than the one obtained by the MKM.

In the MKM and in the combined CLDM for the PDMS
sliding on a fluorinated siltronix surface the friction coeffi-
cient � is about 25–35 times bigger than the viscosity �. The
additional adjustable parameter � /	 in the combined CLDM
is determined from the requirement that ��Ca��=0 at the
experimentally determined critical velocity Ca�=9.1�10−3.

For the combined CLDM this leads to � /	1=9.091 and
for the combined CLDM-L one gets � /	2=6.66. The ob-
tained dependencies of hst�Ca� and ��Ca� in the combined
CLDM and the combined CLDM-L are shown in Figs. 3 and
4, respectively, with dashed-dotted lines. They are practically
indistinguishable. Therefore for the combined model one can
use the lubrication approximation for finite contact angles for
large values of � /	. As one can see the agreement of the
results of the combined CLDM with experimental results is
significantly improved as compared to the pure MKM and
HDM models for all the three criteria �i.e., hst�Ca�, ��Ca�,
and Ca�=9.1�10−3�. The determination of the adjustable pa-
rameters of the combined models through the experimental
values of �eq, ��0�, and Ca� is unique and allows one to
determine the relative influence of the two dissipative chan-
nels when the contact line is moving. Thus for the ratio

�̊l / �̊w �the MKM versus the HDM channel of dissipation�
one gets the following relation:

�̊l/�̊w = �/�	1 sin2 �/�� − sin � cos ��� .

For a spontaneous relaxation one obtains �̊l�6�̊w and with
increasing the plate velocity this ratio decreases reaching the

ratio �̊l�2.5�̊w at the critical velocity.
The predictions of the hydrodynamic approach �which is

actually in lubrication approximation with a correction factor
for finite contact angles �44�� and of the HA in lubrication
approximation �denoted by HA-L� are studied also in
�31,37�. The adjustable parameters in these models �the slip
length ls and the microscopic contact angle �m� are deter-
mined by using also the data on ��eq

r ,�eq
a � and ��0� at zero

FIG. 4. �Color online� Dimensionless relaxation rate � as a
function of the capillary number Ca: experimental results—solid
squares with error bars; the MKM results—solid line; the HDM
results—dotted line; the HDM-L results—dashed line; combined
CLDM �� /	1=9.091� and the combined CLDM-L
�� /	2=6.66�—dashed-dotted lines; HA—short dotted line, and
HA-L—short dashed line within the experimental error interval.
This criterion determines uniquely hst�Ca� and ��Ca� in the MKM
and in the HDM. By extrapolating the experimental results in �31�
for ��Ca� to zero plate velocity we require that it lies in the interval
�0.029−0.0025,0.029+0.0025�.
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plate velocity. The obtained dependencies for the height
hst�Ca� and the relaxation rate ��Ca� on the capillary number
are shown in Figs. 4a and 8a in �37� for the HA-L and in
Figs. 2a and 8b in �31� for the HA. For a more convenient
comparison we reproduce these dependencies also here �only
for the case �m=�eq

r =51.5°� in Figs. 3 and 4 with short dot-
ted �HA� and short dashed �HA-L� lines. One can see that the
HA-L leads to a worse description of the experimental results
than the HDM. The results of the HA do not agree so well
with the experimental results for the relaxation rate ��Ca� at
higher plate velocities as compared to the results of the com-
bined CLDM used in the present work. Critical assumption
in �31,37� is that the microscopic contact angle �m does not
depend on the value of the capillary number. Several curves
for h�Ca� and ��Ca� are shown in �31� corresponding to
different values of the microscopic contact angle. In �3,26� a
combined model is studied and it is assumed that the micro-
scopic contact angle varies with Ca. This realization again
does not lead to a good description of the experimental re-
sults as noted in �45�. One may conclude that the combined
model, based on the HA, does not lead to a good description
of the experimental results in contrast to the good agreement
found for the results of the combined CLDA used in the
present work.

V. CONCLUSION

In this work we derive the asymptotic solutions for the
quasistatic relaxation of the contact line in the Wilhelmy-
plate geometry in the framework of the CLDA. We consider
the general case of a forced relaxation when the contact line
relaxes toward a stationary state when a solid plate is moving
vertically at constant speed below the entrainment transition.
The asymptotic solutions found here are valid for arbitrary
equilibrium contact angles while the existing so far
asymptotic solutions for all approaches were derived for
small contact angles. Also they give very good approxima-
tion of the solutions of the differential equations describing
the relaxation of the height of the contact line and of cosine
of the contact angle for large deviations �of the order of
10–20 %� from the stationary state. In the framework of the
CLDA we obtain asymptotic solutions in the case where the
viscous dissipation term is determined from Moffatt’s solu-
tion �39� for the flow of a viscous fluid inside a corner.

We consider the MKM, the HDM, and the combined
CLDM in which both dissipation channels are taken into
account. The obtained asymptotic solutions clearly show the
qualitative difference between the MKM and the HDM. The
asymptotic solutions found here for the relaxation of the
height of the contact line and for the cosine of the contact
angle are sums of exponential functions in all above models.
These asymptotic solutions are very similar to the asymptotic
solutions found previously in the framework of the CLDA
for the quasistatic relaxation of the radius and the cosine of
the contact angle of sessile drop in Ref. �41�. Our analysis
shows that it is essential that the experimental data are fitted
by a sum of exponential functions when studying the appli-
cability of the CLDA.

We point out the implications which follow from the
asymptotic solutions when only one dissipation channel is

taken into account and compare them to the case when both
dissipation channels are included. It is shown here that for all
values of the equilibrium contact angle in the MKM the criti-
cal height reaches hst

� =�2 and the contact angle goes con-
tinuously to zero �as in a second-order phase transition� with
the plate speed. In the case of a HDM the relation
�st

� =�eq /�3 is valid only for small contact angles, for finite
contact angles there is a significant departures from this re-
lation, and the critical height is strictly less than �2. The
entrainment transition in the HDM can be considered as a
dynamic first-order phase transition �with respect to the
change of the dynamic contact angle with the plate speed�.
The same holds true also for the combined CLDM.

In this work we continue the studies in Refs.
�20,31,37,42� aimed toward a more precise investigation of
the dynamic contact angle where in addition to its depen-
dence on the plate velocity also the relaxation time, the de-
pendence of the relaxation time on the plate velocity, and the
critical velocity are taken into account for performing of a
multicriteria testing. We have applied the obtained
asymptotic solution to the specific system studied experi-
mentally in Ref. �31�. The asymptotic solution agrees with
the exponential relaxation of the height found there. Fits of
the experimental data on the relaxation rate as a function of
the velocity are made in the MKM, in the HDM, and in the
combined CLDM. Comparison of these fits shows, as should
be expected �19�, that a best description of all the experimen-
tal data is obtained with the combined CLDM. The HDM
does not reproduce well the experimental data on ��Ca�
since the relaxation rate decreases too fast with the plate
speed, but the inclusion of this dissipation channel within the
combined CLDM yields a very good agreement with experi-
mental results. This is natural since in the real systems both
dissipation channels are present. The combined CLDM gives
also a better description of all the experimental data than the
results of the lubrication theory with a correction factor for
finite contact angles �31� which takes into account only the
HD channel of dissipation, e.g., the root-mean-square devia-
tion of the CLDM is 5.2 times smaller in Fig. 3 and 2.7 times
smaller in Fig. 4 than that of the results in �31�.

From the fitting of the experimental data by the combined
CLDM we obtain here that the dissipation channel due to the
moving contact line �the MKM� always dominates over the
viscous flow dissipation �the HDM�.

Recently in �30� it was obtained that near the critical ve-
locity in the Wilhelmy-plate geometry the meniscus profile
deviates from the quasistatic approximation. In the present
approach one can take into account this by including in the
differential equations the correction, related to the hydrody-
namic change of the pressure of the free surface �3�. This
will advance the CLDA outside the quasistatic approxima-
tion. However, this is beyond the scope of the present work
and will be studied in a future work.
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